viernes, 8 de abril de 2011

EVOLUCIÓN DE LA CIENCIA

Introducción
A través de los años el hombre a presentado un cambio radical en su nivel de vida; los conocimientos que él a logrado acumular y aplicar ha sido para su beneficio que ha cambiado radicalmente su modo de vivir. Existe una notable diferencia entre el hombre de hace unas cuantas décadas y el hombre moderno, tal diferencia se ha dado por el desarrollo de la ciencia que esta estrechamente relacionada con las innovaciones tecnológicas.
Las necesidades de ciencia y tecnología en nuestro país ya no se satisfacen con enseñara los estudiantes como se verifica una ley científica o como usar determinado equipo y maquinaria que resultara obsoleta un futuro próximo; en nuestros tiempos el preparar gente capaz de pensar y entender los principios básicos de a ciencia y técnica es fundamental para que no le detengan las difultades que presenten e, incluso que pueda desarrollar nuevos procedimientos, en cualquiera que sea su campo de trabajo.
La ciencia por si misma no existe si no que es un estudio que el hombre ha hecho acerca de todos los fenómenos que le rodean; de esta manera, afirmamos que la ciencia es creación del hombre pero que no es algo que halla podido lograrse de la noche a la mañana sino que han transcurrido millones de años para su evolución, observación y desarrollo.
En términos generales la ciencia tiene una gran gama de significados, uno de los mas acertado de esta es el siguiente:
Ciencia (en latín scientia, de scire, `conocer'), término que en su sentido más amplio se emplea para referirse al conocimiento sistematizado en cualquier campo, pero que suele aplicarse sobre todo a la organización de la experiencia sensorial objetivamente verificable. La búsqueda de conocimiento en ese contexto se conoce como `ciencia pura', para distinguirla de la `ciencia aplicada' —la búsqueda de usos prácticos del conocimiento científico— y de la tecnología, a través de la cual se llevan a cabo las aplicaciones.
Por otra parte, la tecnología se define como el proceso a través del cual los seres humanos diseñan herramientas y máquinas para incrementar su control y su comprensión del entorno material. El término proviene de las palabras griegas tecné, que significa 'arte' u 'oficio', y logos, 'conocimiento' o 'ciencia', área de estudio; por tanto, la tecnología es el estudio o ciencia de los oficios.
Algunos historiadores científicos argumentan que la tecnología no es sólo una condición esencial para la civilización avanzada y muchas veces industrial, sino que también la velocidad del cambio tecnológico ha desarrollado su propio ímpetu en los últimos siglos. Las innovaciones parecen surgir a un ritmo que se incrementa en progresión geométrica, sin tener en cuenta los límites geográficos ni los sistemas políticos. Estas innovaciones tienden a transformar los sistemas de cultura tradicionales, produciéndose con frecuencia consecuencias sociales inesperadas. Por ello, la tecnología debe concebirse como un proceso creativo y destructivo a la vez.
ORÍGENES DE LA CIENCIA
Los esfuerzos para sistematizar el conocimiento se remontan a los tiempos prehistóricos, como atestiguan los dibujos que los pueblos del paleolítico pintaban en las paredes de las cuevas, los datos numéricos grabados en hueso o piedra o los objetos fabricados por las civilizaciones del neolítico. Los testimonios escritos más antiguos de investigaciones protocientíficas proceden de las culturas mesopotámicas, y corresponden a listas de observaciones astronómicas, sustancias químicas o síntomas de enfermedades —además de numerosas tablas matemáticas— inscritas en caracteres cuneiformes sobre tablillas de arcilla. Otras tablillas que datan aproximadamente del 2000 a. C. demuestran que los babilonios conocían el teorema de Pitágoras, resolvían ecuaciones cuadráticas y habían desarrollado un sistema sexagesimal de medidas (basado en el número 60) del que se derivan las unidades modernas para tiempos y ángulos.
En el valle del Nilo se han descubierto papiros de un periodo cronológico próximo al de las culturas mesopotámicas que contienen información sobre el tratamiento de heridas y enfermedades, la distribución de pan y cerveza, y la forma de hallar el volumen de una parte de una pirámide. Algunas de las unidades de longitud actuales proceden del sistema de medidas egipcio y el calendario que empleamos es el resultado indirecto de observaciones astronómicas prehelénicas.
ORÍGENES DE LA TEORÍA CIENTÍFICA  
El conocimiento científico en Egipto y Mesopotamia era sobre todo de naturaleza práctica, sin excesiva sistematización. Uno de los primeros sabios griegos que investigó las causas fundamentales de los fenómenos naturales fue, en el siglo VI a. C., el filósofo Tales de Mileto que introdujo el concepto de que la Tierra era un disco plano que flotaba en el elemento universal, el agua. El matemático y filósofo Pitágoras, de época posterior, estableció una escuela de pensamiento en la que las matemáticas se convirtieron en disciplina fundamental en toda investigación científica. Los eruditos pitagóricos postulaban una Tierra esférica que se movía en una órbita circular alrededor de un fuego central. En Atenas, en el siglo IV a. C., la filosofía natural jónica y la ciencia matemática pitagórica llegaron a una síntesis en la lógica de Platón y Aristóteles. En la Academia de Platón se subrayaba el razonamiento deductivo y la representación matemática; en el Liceo de Aristóteles primaban el razonamiento inductivo y la descripción cualitativa. La interacción entre estos dos enfoques de la ciencia ha llevado a la mayoría de los avances posteriores.
Durante la llamada época helenística, que siguió a la muerte de Alejandro Magno, el matemático, astrónomo y geógrafo Eratóstenes realizó una medida asombrosamente precisa de las dimensiones de la Tierra. El astrónomo Aristarco de Samos propuso un sistema planetario heliocéntrico (con centro en el Sol), aunque este concepto no halló aceptación en la época antigua. El matemático e inventor Arquímedes sentó las bases de la mecánica y la hidrostática (una rama de la mecánica de fluidos); el filósofo y científico Teofrasto fundó la botánica; el astrónomo Hiparco de Nicea desarrolló la trigonometría, y los anatomistas y médicos Herófilo y Erasístrato basaron la anatomía y la fisiología en la disección.
Tras la destrucción de Cartago y Corinto por los romanos en el año 146 a. C., la investigación científica perdió impulso hasta que se produjo una breve recuperación en el siglo II d. C. bajo el emperador y filósofo romano Marco Aurelio. El sistema de Tolomeo —una teoría geocéntrica (con centro en la Tierra) del Universo propuesta por el astrónomo Claudio Tolomeo— y las obras médicas del filósofo y médico Galeno se convirtieron en tratados científicos de referencia para las civilizaciones posteriores. Un siglo después surgió la nueva ciencia experimental de la alquimia a partir de la metalurgia. Sin embargo, hacia el año 300, la alquimia fue adquiriendo un tinte de secretismo y simbolismo que redujo los avances que sus experimentos podrían haber proporcionado a la ciencia.
LA CIENCIA MEDIEVAL Y RENACENTISTA  
Durante la edad media existían seis grupos culturales principales: en lo que respecta a Europa, de un lado el Occidente latino y, de otro, el Oriente griego (o bizantino); en cuanto al continente asiático, China e India, así como la civilización musulmana (también presente en Europa), y, finalmente, en el ignoto continente americano, desligado del resto de los grupos culturales mencionados, la civilización maya. El grupo latino no contribuyó demasiado a la ciencia hasta el siglo XIII; los griegos no elaboraron sino meras paráfrasis de la sabiduría antigua; los mayas, en cambio, descubrieron y emplearon el cero en sus cálculos astronómicos, antes que ningún otro pueblo. En China la ciencia vivió épocas de esplendor, pero no se dio un impulso sostenido. Las matemáticas chinas alcanzaron su apogeo en el siglo XIII con el desarrollo de métodos para resolver ecuaciones algebraicas mediante matrices y con el empleo del triángulo aritmético. Pero lo más importante fue el impacto que tuvieron en Europa varias innovaciones prácticas de origen chino. Entre ellas estaban los procesos de fabricación del papel y la pólvora, el uso de la imprenta y el empleo de la brújula en la navegación. Las principales contribuciones indias a la ciencia fueron la formulación de los numerales denominados indoarábigos, empleados actualmente, y la modernización de la trigonometría. Estos avances se transmitieron en primer lugar a los árabes, que combinaron los mejores elementos de las fuentes babilónicas, griegas, chinas e indias. En el siglo IX Bagdad, situada a orillas del río Tigris, era un centro de traducción de obras científicas y en el siglo XII estos conocimientos se transmitieron a Europa a través de España, Sicilia y Bizancio.
En el siglo XIII la recuperación de obras científicas de la antigüedad en las universidades europeas llevó a una controversia sobre el método científico. Los llamados realistas apoyaban el enfoque platónico, mientras que los nominalistas preferían la visión de Aristóteles. En las universidades de Oxford y París estas discusiones llevaron a descubrimientos de óptica y cinemática que prepararon el camino para Galileo y para el astrónomo alemán Johannes Kepler.
La gran epidemia de peste y la guerra de los Cien Años interrumpieron el avance científico durante más de un siglo, pero en el siglo XVI la recuperación ya estaba plenamente en marcha. En 1543 el astrónomo polaco Nicolás Copérnico publicó De revolutionibus orbium caelestium (Sobre las revoluciones de los cuerpos celestes), que conmocionó la astronomía. Otra obra publicada ese mismo año, Humani corporis fabrica libri septem (Siete libros sobre la estructura del cuerpo humano), del anatomista belga Andrés Vesalio, corrigió y modernizó las enseñanzas anatómicas de Galeno y llevó al descubrimiento de la circulación de la sangre. Dos años después, el libro Ars magna (Gran arte), del matemático, físico y astrólogo italiano Gerolamo Cardano, inició el periodo moderno en el álgebra con la solución de ecuaciones de tercer y cuarto grado.
LA CIENCIA MODERNA  
Esencialmente, los métodos y resultados científicos modernos aparecieron en el siglo XVII gracias al éxito de Galileo al combinar las funciones de erudito y artesano. A los métodos antiguos de inducción y deducción, Galileo añadió la verificación sistemática a través de experimentos planificados, en los que empleó instrumentos científicos de invención reciente como el telescopio, el microscopio o el termómetro. A finales del siglo XVII se amplió la experimentación: el matemático y físico Evangelista Torricelli empleó el barómetro; el matemático, físico y astrónomo holandés Christiaan Huygens usó el reloj de péndulo; el físico y químico británico Robert Boyle y el físico alemán Otto von Guericke utilizaron la bomba de vacío.
La culminación de esos esfuerzos fue la formulación de la ley de la gravitación universal, expuesta en 1687 por el matemático y físico británico Isaac Newton en su obra Philosophiae naturalis principia mathematica (Principios matemáticos de la filosofía natural). Al mismo tiempo, la invención del cálculo infinitesimal por parte de Newton y del filósofo y matemático alemán Gottfried Wilhelm Leibniz sentó las bases de la ciencia y las matemáticas actuales.
Los descubrimientos científicos de Newton y el sistema filosófico del matemático y filósofo francés René Descartes dieron paso a la ciencia materialista del siglo XVIII, que trataba de explicar los procesos vitales a partir de su base físico-química. La confianza en la actitud científica influyó también en las ciencias sociales e inspiró el llamado Siglo de las Luces, que culminó en la Revolución Francesa de 1789. El químico francés Antoine Laurent de Lavoisier publicó el Tratado elemental de química en 1789 e inició así la revolución de la química cuantitativa.
Los avances científicos del siglo XVIII prepararon el camino para el siguiente, llamado a veces “siglo de la correlación” por las amplias generalizaciones que tuvieron lugar en la ciencia. Entre ellas figuran la teoría atómica de la materia postulada por el químico y físico británico John Dalton, las teorías electromagnéticas de Michael Faraday y James Clerk Maxwell, también británicos, o la ley de la conservación de la energía, enunciada por el físico británico James Prescott Joule y otros científicos.
La teoría biológica de alcance más global fue la de la evolución, propuesta por Charles Darwin en su libro El origen de las especies, publicado en 1859, que provocó una polémica en la sociedad —no sólo en los ámbitos científicos— tan grande como la obra de Copérnico. Sin embargo, al empezar el siglo XX el concepto de evolución ya se aceptaba de forma generalizada, aunque su mecanismo genético continuó siendo discutido.
Mientras la biología adquiría una base más firme, la física se vio sacudida por las inesperadas consecuencias de la teoría cuántica y la de la relatividad. En 1927 el físico alemán Werner Heisenberg formuló el llamado principio de incertidumbre, que afirma que existen límites a la precisión con que pueden determinarse a escala subatómica las coordenadas de un suceso dado. En otras palabras, el principio afirmaba la imposibilidad de predecir con precisión que una partícula, por ejemplo un electrón, estará en un lugar determinado en un momento determinado y con una velocidad determinada. La mecánica cuántica no opera con datos exactos, sino con deducciones estadísticas relativas a un gran número de sucesos individuales.

Equivalencia entre la masa y la energía y sus consecuencias practicas


En un breve trabajo (septiembre de 1905) intitulado “¿Depende la inercia de un cuerpo de su contenido energético?”, Einstein concluye que, si un cuerpo irradia luz de energía L, la masa del cuerpo debe disminuir en L/c2, proponiendo una forma de verificación utilizando un elemento radiactivo (Radio). Esta publicación científica condujo a la más célebre fórmula en la historia de la ciencia, conocida como Principio de equivalencia entre masa y energía.
E = m c2
Esta relación es considerada un Principio debido a que no tiene una demostración general y se comprobó que es válida universalmente para toda forma de energía. La demostración vista en el apartado anterior solamente vincula la variación de la energía cinética con el incremento de masa de una partícula puntual, equivalente al Teorema de las fuerzas vivas de la mecánica de Newton.
La energía total relativista (E) es una propiedad de todo sistema físico, masivo o no masivo, cuyo valor aumenta (disminuye) cuando se le entrega (quita) energía por cualquier proceso, y toma el valor cero sólo cuando el sistema se aniquila (desaparece). En consecuencia, para un determinado sistema de referencia inercial, su valor depende del estado del sistema físico y sólo será constante si el sistema físico está aislado. Resulta evidente, además, que la magnitud Energía total es relativa al sistema de referencia.

La equivalencia entre la masa y la energía dada por la expresión de la teoría de la relatividad de Einstein,
indica que la masa conlleva una cierta cantidad de energía, aunque se encuentre en reposo, concepto ausente en mecánica clásica, esto es, que la energía en reposo de un cuerpo es el producto de su masa por su factor de conversión (velocidad de la luz al cuadrado), o que cierta cantidad de energía en reposo por unidad de masa es equivalente a la velocidad de la luz al cuadrado:
A esta fórmula, actualmente se le aplica el sistema SI (en la fórmula anterior donde la velocidad de la luz se expresa en m/s, la energía en J y la masa en kg), aunque Einstein utilizara el CGS. 

La fórmula, no obstante, es independiente de cualquier sistema de unidades. 
En un Sistema de Unidades Naturales, c adquiere el valor de 1 y la fórmula sería:

  • Donde se establece una igualdad entre Energía y Masa sin factor de conversión.
  • La ecuación de extender la ley de conservación de la energía a fenómenos como la desintegración radiactiva. La fórmula establece la relación de proporcionalidad directa entre la energía E (según la definición ha miltoniana) y la masa m, siendo la velocidad de la luz c elevada al cuadrado la constante de dicha proporcionalidad.
  • También indica la relación cuantitativa entre masa y energía en cualquier proceso en que una se transforma en la otra, como en una explosión nuclear. Entonces, E puede tomarse como la energía liberada cuando una cierta cantidad de masa m es desintegrada, o como la energía absorbida para crear esa misma cantidad de masa. En ambos casos, la energía (liberada o absorbida) es igual a la masa (destruida o creada) multiplicada por el cuadrado de la velocidad de la luz.

Energía en reposo = Masa × (Constante de la luz)


Postulados de la relatividad especial y sus consecuencias

La teoría especial de la relatividad, también llamada teoría de la relatividad restringida, es una teoría física publicada en 1905 por Albert Einstein. Surge de la observación de que la velocidad de la luz en el vacío es igual en todos los sistemas de referencia inerciales y de sacar todas las consecuencias del principio de relatividad de Galileo, según el cual cualquier experiencia hecha en un sistema de referencia inercial se desarrollará de manera idéntica en cualquier otro sistema inercial.
La teoría especial de la relatividad estableció nuevas ecuaciones que permitían pasar de un sistema de referencia inercial a otro. Las ecuaciones correspondientes conducen a fenómenos que chocan con el sentido común, siendo uno de los más asombrosos y más famosos la llamada paradoja de los gemelos.
La relatividad especial tuvo también un impacto en la filosofía, eliminando toda posibilidad de existencia de un tiempo y de un espacio absoluto en el conjunto del universo.

Postulados de la relatividad especial
1. Primer postulado (principio de relatividad)
La observación de un fenómeno físico por más de un observador inercial debe resultar en un acuerdo entre los observadores sobre la naturaleza de la realidad.
O, la naturaleza del universo no debe cambiar para un observador si su estado inercial cambia.
O, toda teoría física debe ser matemáticamente similar para cada observador inercial, presentando a lo sumo variaciones dentro del rango de las condiciones iniciales de la misma.
O, las leyes del universo son las mismas sin que importe el marco de referencia inercial.
2. Segundo postulado (invariabilidad de c)
La Luz siempre se propaga en el vacío con una velocidad constante c que es independiente del estado de movimiento del cuerpo emisor.


La teoría especial de la relatividad estableció nuevas ecuaciones que permitían pasar de un sistema de referencia inercial a otro. Las ecuaciones correspondientes conducen a fenómenos que chocan con el sentido común, siendo uno de los más asombrosos y más famosos la llamada paradoja de los gemelos.
La relatividad especial tuvo también un impacto en la filosofía, eliminando toda posibilidad de existencia de un tiempo y de un espacio absoluto en el conjunto del universo.

UNIDAD 6: FÍSICA Y TECNOLOGÍA CONTEMPORÁNEAS (30 horas)

Equipo
6.1 Crisis de la física clásica y origen de la física cuántica.
Radiación del cuerpo negro y la hipótesis cuántica.
1
Hacia 1880 la física presentaba un panorama de calma: la mayoría de los fenómenos podían explicarse mediante la mecánica de Newton, la teoría electromagnética de Maxwell, la termodinámica y la mecánica estadística de Boltzmann. Parecía que sólo quedaban por resolver unos pocos problemas, como la determinación de las propiedades del éter y la explicación de los espectros de emisión y absorción de sólidos y gases. Sin embargo, estos fenómenos contenían las semillas de una revolución cuyo estallido se vio acelerado por una serie de asombrosos descubrimientos realizados en la última década del siglo XIX: en 1895, Wilhelm Conrad Roentgen descubrió los rayos X; ese mismo año, Joseph John Thomson descubrió el electrón; en 1896, Antoine Henri Becquerel descubrió la radiactividad; entre 1887 y 1899, Heinrich Hertz, Wilhelm Hallwachs y Philipp Lenard descubrieron diversos fenómenos relacionados con el efecto fotoeléctrico. Los datos experimentales de la física, unidos a los inquietantes resultados del experimento de Michelson-Morley y al descubrimiento de los rayos catódicos, formados por chorros de electrones, desafiaban a todas las teorías disponibles.
Sobre la superficie de un cuerpo incide constantemente energía radiante, tanto desde el interior como desde el exterior, la que incide desde el exterior procede de los objetos que rodean al cuerpo. Cuando la energía radiante incide sobre la superficie una parte se refleja y la otra parte se transmite.
2
Dos fueron básicamente los fenómenos que pusieron a la física en cuarentena: la   radiación del cuerpo negro y la electrodinámica de los cuerpos en movimiento.
se afirma que la física cuántica nació con el descubrimiento de Planck. Su formulación se inició hasta 1925, con los trabajos desde 1926, el desarrollo de la cuántica fue espectacular otro físico alemán, Werner Heisenberg. A partir mecánica
Los físicos entienden por cuerpo negro un absorbente ideal, capaz por tanto de engullir cuanta radiación electromagnética le llegue, y por ello, también, un emisor ideal; un pequeño agujero en una caja completamente cerrada a cualquier temperatura es un ejemplo de cuerpo negro.
3
CRISIS DE LA FISICA CLAISCA
 Finales del siglo XIX, los físicos llegaron a pensar que el edificio de las ciencias estaba prácticamente completo.
Sin embargo, en muy pocos años se realizaron varias experiencias que vinieron a demostrar lo contrario. Estos son los principales aspectos que hicieron que el edificio científico construido se derrumbara con gran estrépito:
Los espectros continuos de emisión
La teoría de la Relatividad
El efecto fotoeléctrico
El efecto Compton
El comportamiento dual de las ondas electromagnéticas
FISICA CUANTICA
Aunque se afirma que la física cuántica nació con el descubrimiento de Planck, en 1900, lo cierto es que su formulación se inició hasta 1925, con los trabajos de otro físico alemán, Werner Heisenberg. Es indudable que la mecánica cuántica, como casi todas las teorías científicas modernas, es una obra colectiva resultante de una gran variedad de esfuerzos personales realizados durante muchos años y en diversos lugares. Sin embargo, buscando los antecedentes determinantes de lo que ahora sabemos de ese campo, es imposible pasar por alto un artículo –fechado en 1925– en el que Heisenberg señaló la importancia de cambiar la formulación matemática de los fenómenos que ocurren en el mundo atómico.

A partir de 1926, el desarrollo de la mecánica cuántica fue espectacular. En ese año Erwin Schrödinger (físico austriaco) formuló la famosa ecuación que desde entonces lleva su nombre y con ella los físicos iniciaron la construcción del gran edificio que alberga ahora las explicaciones de los fenómenos atómicos y moleculares. Poco después se puso en limpio la estructura matemática de la teoría cuántica, especialmente por los trabajos del físico inglés Paul Adrien, Maurice Dirac y del matemático estadounidense, de origen húngaro, John von Neumman.
La física cuántica -también conocida como mecánica cuántica o mecánica ondulatoria- es la rama de la física que estudia el comportamiento de la energía y la materia cuando las dimensiones de ésta son inferiores a los 1.000 átomos.
El término ‘mecánica cuántica’ fue utilizado por primera vez por Max Born en 1924, aunque la primera formulación cuántica de un fenómeno se había dado a conocer anteriormente, el 14 de diciembre de 1900 en una sesión de la Sociedad Física de la Academia de Ciencias de Berlín. Su autor, Max Planck es considerado el padre de los fundamentos de la física cuántica.
En cualquier caso, la mecánica cuántica es la última y más moderna de las ramas de la física, ya que sus bases se concretaron a lo largo de la primera mitad del siglo XX, en respuesta a los problemas que no podían ser resueltos por medio de la física clásica.
En el desarrollo formal de la teoría tuvieron mucho que ver también otros físicos y matemáticos, entre quienes destacaron Einstein, Heisenberg, Schrödinger, Dirac y Von Neumann. Algunos de los aspectos fundamentales de la teoría de la física mecánica están siendo aún estudiados activamente.

RADIACION DEL CUERPO NEGRO
Todos los objetos emiten ondas electromagnéticas. Para entender por qué emiten radiación los objetos ponga mucha atención a las siguientes consideraciones:
 
Los objetos están hechos de átomos.
 
Un átomo puede emitir radiación (como la luz) cuando uno de sus electrones pierde energía y así pasa a un orbital de menor energía.
 
Un átomo puede absorber radiación cuando uno de sus electrones gana energía y así pasa a un orbital de mayor energía.
 
El movimiento de los átomos en un objeto produce choques o vibraciones que estimulan la emisión y absorción de radiación.
 
Un aumento en la temperatura de un objeto representa un aumento de la energía cinética de movimiento de sus átomos.
 
En la naturaleza ningún objeto puede        tener temperatura absoluta igual a cero.
 

 
El físico alemán Max Plank, descubrió la ley que gobierna la radiación de los cuerpos en equilibrio termodinámico. Según Plank, la intensidad de radiación para cada longitud de onda depende únicamente de la temperatura del cuerpo en cuestión.
 

El espectro de radiación (o intensidad para cada longitud de onda) al que llegó Plank tiene una forma característica así:
 

Los físicos designan este espectro con el nombre de Radiación de Cuerpo Negro. Plank llegó a este resultado introduciendo el concepto de quantum de energía (es decir que la energía en la naturaleza sólo se puede intercambiar en paquetes con cantidades discretas). Este es el principio de la mecánica cuántica.
 

HIPOTESIS CUANTICA
La física de la época de Max Planck no permitía explicar los detalles de la radiación térmica (también llamada radiación de cuerpo negro). Planck tuvo que inventar una física nueva. Supuso que la radiación se emitía y absorbía en “paquetes”. Cada paquete contiene una cantidad fija de energía y no se puede subdividir. Planck llamó a los paquetes quantum (que quiere decir “qué tanto” en latín). Con la hipótesis de que la radiación venía en cuantos, Planck logró explicar la radiación térmica.
La hipótesis cuántica de Planck iba en contra de lo que se sabía acerca de la energía. Los físicos pensaban que ésta podía ir y venir entre los objetos como un flujo continuo (digamos, como un chorro de agua, que llena una cubeta continuamente). Planck cambió este flujo continuo por una ráfaga de paquetes discontinuos (como si la cubeta se llenara de piedras, o cubos de hielo). Al principio este razonamiento no le gustó ni a Planck. Pero la hipótesis cuántica ganó adeptos conforme fue explicando otros fenómenos que no se entendían con la física clásica.
4
Se denomina física clásica a la física basada en los principios previos a la aparición de la física cuántica. Incluyen estudios del electromagnetismo, óptica, mecánica y dinámica de fluidos, entre otras. La física clásica se considera determinista (aunque no necesariamente computable o computacionalmente predecible), en el sentido de que el estado de un sistema cerrado en el futuro depende exclusivamente del estado del sistema en el momento actual.
Algunas veces se reserva el nombre física clásica para la física pre relativista, sin embargo, desde el punto de vista teórico la teoría de la relatividad introduce supuestos menos radicales que los que subyacen a la teoría cuántica. Por esa razón resulta conveniente desde un punto de vista metodológico considerar en conjunto las teorías físicas no-cuánticas.


El origen de la Teoría Cuántica

¿Qué pretendía explicar, de manera tan poco afortunada, la Ley de Rayleigh-Jeans (1899)? Un fenómeno físico denominado radiación del cuerpo negro,  es decir, el proceso que describe la interacción entre la materia y la radiación, el modo en que la materia intercambia energía, emitiéndola o absorbiéndola, con una fuente de radiación. Pero además de la Ley de Rayleigh-Jeans había otra ley, la Ley de Wien (1893), que pretendía también explicar el mismo fenómeno.

La Ley de Wien daba una explicación experimental correcta si la frecuencia de   la radiación es alta, pero fallaba para frecuencias bajas. Por su parte, la Ley de Rayleigh-Jeans daba una explicación experimental correcta si la frecuencia de la radiación es baja, pero fallaba para frecuencias altas.

La frecuencia es una de las características que definen la radiación, y en general cualquier fenómeno en el que intervengan ondas. Puede interpretarse la frecuencia como el número de oscilaciones por unidad de tiempo. Toda la gama de posibles frecuencias para una radiación en la Naturaleza se hallan contenidas en el espectro electromagnético, el cual, según el valor de la frecuencia elegida determina un tipo u otro de radiación.

En 1900, Max Planck puso la primera piedra del edificio de la Teoría Cuántica. Postuló una ley (la Ley de Planck) que explicaba de manera unificada la radiación del cuerpo negro, a través de todo el espectro de frecuencias.
Un cuerpo negro es un objeto teórico o ideal que absorbe toda la luz y toda la energía radiante que incide sobre él. Nada de la radiación incidente se refleja o pasa a través del cuerpo negro. A pesar de su nombre, el cuerpo negro emite luz y constituye un modelo ideal físico para el estudio de la emisión de radiación electromagnética. El nombre Cuerpo negro fue introducido por Gustav Kirchhoff en 1862. La luz emitida por un cuerpo negro se denomina radiación de cuerpo negro.
Todo cuerpo emite energía en forma de ondas electromagnéticas, siendo esta radiación, que se emite incluso en el vacío, tanto más intensa cuando más elevada es la temperatura del emisor. La energía radiante emitida por un cuerpo a temperatura ambiente es escasa y corresponde a longitudes de onda superiores a las de la luz visible (es decir, de menor frecuencia). Al elevar la temperatura no sólo aumenta la energía emitida, sino que lo hace a longitudes de onda más cortas; a esto se debe el cambio de color de un cuerpo cuando se calienta. Los cuerpos no emiten con igual intensidad a todas las frecuencias o longitudes de onda, sino que siguen la ley de Planck.
A igualdad de temperatura, la energía emitida depende también de la naturaleza de la superficie; así, una superficie mate o negra tiene un poder emisor mayor que una superficie brillante. Así, la energía emitida por un filamento de carbón incandescente es mayor que la de un filamento de platino a la misma temperatura. La ley de Kirchhoff establece que un cuerpo que es buen emisor de energía es también buen absorbente de dicha energía. Así, los cuerpos de color negro son buenos absorbentes y el cuerpo negro es un cuerpo ideal, no existente en la naturaleza, que absorbe toda la energía.

La hipótesis de Planck

¿Qué aportaba la ley de Planck que no se hallase ya implícito en las leyes de Wien y de Rayleigh-Jeans? Un ingrediente tan importante como novedoso. Tanto que es el responsable de la primera gran crisis provocada por la Teoría Cuántica sobre el marco conceptual de la Física Clásica. Ésta suponía que el intercambio de energía entre la radiación y la materia ocurría a través de un proceso continuo, es decir, una radiación de frecuencia f podía ceder cualquier cantidad de energía al ser absorbida por la materia.

Lo que postuló Planck al introducir su ley es que la única manera de obtener una fórmula experimentalmente correcta exigía la novedosa y atrevida suposición de que dicho intercambio de energía debía suceder de una manera discontinua, es decir, a través de la emisión y absorción de cantidades discretas de energía, que hoy denominamos “quantums” de radiación. La cantidad de energía E propia de un quantum de radiación de frecuencia f se obtiene mediante la relación de Planck: E = h x f, siendo h la constante universal de Planck = 6’62 x 10 (expo-34) (unidades de “acción”).

Puede entenderse la relación de Planck diciendo que cualquier radiación de frecuencia f se comporta como una corriente de partículas, los quantums, cada una de ellas transportando una energía E = h x f, que pueden ser emitidas o absorbidas por la materia.

La hipótesis de Planck otorga un carácter corpuscular, material, a un fenómeno tradicionalmente ondulatorio, como la radiación. Pero lo que será más importante, supone el paso de una concepción continuista de la Naturaleza a una discontinuista, que se pone especialmente de manifiesto en el estudio de la estructura de los átomos, en los que los electrones sólo pueden tener un conjunto discreto y discontinuo de valores de energía.

La hipótesis de Planck quedó confirmada experimentalmente, no sólo en el proceso de radiación del cuerpo negro, a raíz de cuya explicación surgió, sino también en las explicaciones del efecto fotoeléctrico, debida a Einstein (1905), y del efecto Compton, debida a Arthur Compton (1923).
5
La crisis de la Física clásica a comienzos del siglo XX está relacionada con la
imposibilidad de detectar un sistema de referencia en reposo absoluto y con problemas relacionados con la emisión y absorción de ondas electromagnéticas y que, de forma coincidente, iban también a exigir un cambio profundo en dichas concepciones clásicas.
Todo cuerpo emite energía en forma de ondas electromagnéticas, siendo esta radiación, que se emite incluso en el vacío, tanto más intensa cuando más elevada es la temperatura del emisor. La energía radiante emitida por un cuerpo a temperatura ambiente es escasa y corresponde a longitudes de onda superiores a las de la luz visible.
La segunda hipótesis de Planck, establece que la energía de los osciladores está cuantizada. La energía de un oscilador de frecuencia f sólo puede tener ciertos valores que son 0, hf, 2hf ,3hf....nhf.
6
La crisis de la Física clásica a comienzos del siglo XX está relacionada con la
imposibilidad de detectar un sistema de referencia en reposo absoluto - que va a dar lugar
al nacimiento de la teoría de la Relatividad - y con problemas relacionados con la emisión y
absorción de ondas electromagnéticas y que, de forma coincidente, iban también a exigir un
cambio profundo en dichas concepciones clásicas.
Dichos problemas son: el efecto fotoeléctrico -liberación de electrones por superficies
iluminadas- y los espectros discontinuos de los gases.
Es preciso referirnos a un tercer problema - aunque su mayor complejidad no recomienda su
estudio a este nivel-, el relativo a la interpretación de los espectros continuos emitidos por
sólidos y líquidos incandescentes.
Estos problemas originaron la crisis de la Física clásica, marcando sus límites de validez, y
pusieron en evidencia la necesidad de profundos cambios en ella. Aunque los primeros aparecen
históricamente como retoques, es decir, como hipótesis parciales que rectificaron el edificio
teórico existente, pronto se vio la necesidad de un replanteamiento global, elaborándose un
nuevo marco conceptual que conocemos como Física cuántica.
De acuerdo con ello desarrollaremos el tema según el siguiente hilo conductor:
cualquier sistema de radiación de energía atómica podía teóricamente ser dividido en un número de elementos de energía discretos , tal que cada uno de estos elementos de energía sea proporcional a la frecuencia, con las que cada uno podía de manera individual irradiar energía, como lo muestra la siguiente fórmula:

E= h ν

donde es un valor numérico llamado constante de Planck. Entonces, en 1905, para explicar el efecto fotoeléctrico (1839),   esto es, que la luz brillante en ciertos materiales puede funcionar para expulsar electrones del material



MEDICION DE LA ENERGIA RADIENTE SOLAR

MATERIAL: Piedra volcánica (cuerpo negro), lupa, termómetro.
Procedimiento:
-        Medir durante tres minutos la temperatura del hueco de la piedra volcánica, expuesta a la radiación solar, registrar el dato final.
-       Calentar el hueco de piedra volcánica con la lupa (coincidir el foco de la radiación solar con el centro del hueco) durante tres minutos, medir con el termómetro la temperatura obtenida.
OBSERVACIONES:
EQUIPO
TEMPERATURA INICIAL   OC
TEMPERATURA FINAL  |OC
1
35°C
40°C
2
33oC
37oC
3
31oC
38oC
4
30°C
39°C
5
34oC
40o C
6
35°C
41o C

CONCLUSIONES:

La temperatura que otorga la radiación solar no es igual de fuerte que la que le otorgamos usando la lupa para concentrar los rayos a una dirección más puntual. Los rayos solares son muy dispersos por lo que no alcanzan a quemarnos, sin embargo. Si nos apuntaran directamente con el bastaría para prendernos fuego.

Limites de la aplicabilidad de la mecánica clásica y origen de la física relativista


Física clásica
La física que impera hasta finales del siglo XIX se fundamenta en la relación causa-efecto (todo efecto es producido por una causa de existencia previa), en la creencia de que el único límite al conocimiento de las cosas reside en la sofisticación del aparato de medida necesario para obtenerlo y en que las leyes de la física son expresables mediante una ecuación matemática, más o menos sencilla, cuya solución es única y determinista. Concibe la transmisión del efecto con velocidad infinita (relación causa-efecto instantánea). Las herramientas de que dispone son la concepción galileana del espacio, las leyes de Newton de la dinámica y el cálculo infinitesimal.
Esta física explica en términos de ecuaciones sencillas y fenómenos bien conocidos la mayoría de los efectos naturales observables a simple vista, dando una descripción adecuada y muy útil de ellos.
Física relativista
Tras los trabajos de A. Einstein, en los que el tiempo pasaba de ser una variable independiente del espacio a ser una variable más, acoplada a las variables espaciales, el concepto de simultaneidad de sucesos dejó de tener sentido como absoluto y pasa a depender explícitamente de la posición y estado dinámico del observador, es decir, se relativiza. Esta concepción de relatividad obligó a revisar conceptos clave como masa y energía.
La física clásica es deducida de la física relativista cuando la velocidad de los observadores es mucho menor que la velocidad de la luz, que se toma como constante universal.

Naturaleza dual de la materia: electrones, núcleos y partículas elementales


La naturaleza ondulatoria es inherente a cada cuerpo. La importancia del hecho radica en que en ocasiones la luz se comporta de una u otra forma.

Louis de Broglie postuló la dualidad en su forma:

lambda=h/mxv

Donde lambda= la longitud de onda (metros)
h=Constante de Planck (6.626x10-34 Jxs)
m=masa (kg)
v=velocidad (m/s)

No muchos años más tarde, el francés Louis de Broglie propondría en su doctorado que si la luz era una partícula y una onda a la vez, también el resto de partículas podrían serlo. El problema para detectar la onda de las partículas es que la longitud de ésta es inversamente proporcional a la masa y a la velocidad de la partícula. Por tanto, por poco grande que fuera la masa de una partícula, su onda ya era demasiado pequeña para ser observada. No obstante esto se lograría poco después en un experimento con unas partículas lo suficientemente poco masivas como para tener una onda “visible” y bastante manejable: los electrones. En el experimento se observó que los electrones tenían un comportamiento exclusivo de las ondas: la difracción. No explicaré ahora en qué consiste éste fenómeno, pero el caso es que bastó para ver que las partículas también pueden ser descritas como ondas, con su frecuencia y su longitud de onda, demostrándose así la dualidad onda-partícula.
Todo esto no significa que cuando una partícula se mueve está “arrastrando” una onda tras de ella, sino que puede ser descrita como onda: de igual modo que puede describirse asignándole toda una serie de características propias de las partículas (masa, velocidad...), se puede describir utilizando una función de onda, es decir, también observamos las características de las ondas. Y si resulta que tiene las características que definen a una onda... es que es una onda. Lo que estamos acostumbrados a imaginar como simples partículas son entes de naturaleza dual que se comportarán como onda o como partícula según las circunstancias.

Modelo atómico de Bohr

El núcleo está compuesto por protones y neutrones. El número Z de protones coincide con el número de electrones en un átomo neutro. La masa de un protón o de un neutrón es aproximadamente 1850 veces la de un electrón. En consecuencia, la masa de un átomo es prácticamente igual a la del núcleo.
Sin embargo, los electrones de un átomo son los responsables de la mayoría de las propiedades atómicas que se reflejan en las propiedades macroscópicas de la materia.
El movimiento de los electrones alrededor del núcleo se explica, considerando solamente las interacciones entre el núcleo y los electrones (la interacción gravitatoria es completamente despreciable).

El modelo de Bohr es muy simple y recuerda al modelo planetario de Copérnico, los planetas describiendo órbitas circulares alrededor del Sol. El electrón de un átomo o ión hidrogenoide describe también órbitas circulares, pero los radios de estas órbitas no pueden tener cualquier valor.

Consideremos un átomo o ión con un solo electrón. El núcleo de carga Ze es suficientemente pesado para considerarlo inmóvil,

Si el electrón describe una órbita circular de radio r, por la dinámica del movimiento circular uniforme



Niels Bohr
Espectros atómicos discontinuos originados por la radiación emitida por los átomos excitados de los elementos en estado gaseoso.
Propuso un nuevo modelo atómico, según el cual los electrones giran alrededor del núcleo en unos niveles bien definidos.
(Modelo atómico de Bohr.)

6.3 Espectros de emisión y absorción de gases

Cuando un elemento irradia energía no lo hace en todas las longitudes de onda. Solamente en aquellas de las que está “provisto”. Esas longitudes de onda sirven para caracterizar, por tanto, a cada elemento. También ocurre que cuando un elemento recibe energía no absorbe todas las longitudes de onda, sino solo aquellas de las que es capaz de “proveerse”. Coinciden por tanto, las bandas del espectro en las que emite radiación con los huecos o líneas negras del espectro de absorción de la radiación, como si un espectro fuera el negativo del otro.
Los espectros de emisión:
Todos los cuerpos emiten energía a ciertas temperaturas. El espectro de la radiación energética emitida es su espectro de emisión. Todos los cuerpos no tienen el mismo espectro de emisión. Esto es, hay cuerpos que emiten en el infrarrojo, por ejemplo, y otros cuerpos no.
En realidad, cada uno de los elementos químicos tiene su propio espectro de emisión. Y esto sirve para identificarlo y conocer de su existencia en objetos lejanos, inaccesibles para nosotros, como son las estrellas.
Así, el sodio tiene su característico espectro de emisión, lo mismo que el calcio, o que el hidrógeno, etc.

Un gas caliente y transparente emite líneas espectrales de colores brillantes contra un fondo de líneas oscuro. Esas líneas oscuras, en el espectro de un gas en particular, se dan exactamente en las mismas longitudes de onda que las líneas oscuras en el espectro de absorción de un gas que tenga la misma composición química. 


Los espectros de absorción:
Y también los cuerpos absorben radiación emitida desde otros cuerpos, eliminando del espectro de radiación que reciben aquellas bandas absorbidas, que quedan de color negro. Son lo que se llaman “rayas negras” o simplemente “rayas” del espectro.
También ocurre con la absorción, que unos cuerpos absorben la radiación de unas determinadas longitudes de onda y no absorben la radiación de otras longitudes de onda, por lo que cada cuerpo, cada elemento químico en realidad, tiene su propio espectro de absorción, correspondiéndose con su espectro de emisión, cual si fuera el negativo con el positivo de una película.

Un liviano, transparente y caliente gas en frente de una fuente productora de radiaciones espectrales, especialmente de características continuas, genera un espectro de absorción, el cual se distingue por una serie de líneas espectrales oscuras entre los colores brillantes del espectro continuo. En el gráfico de la figura se grafica la intensidad lumínica versus la longitud de onda (visuales) contrastada con las líneas espectrales sustraídas del resto de la luz.

6.2 Cuantización de la energía y efecto fotoeléctrico

La experiencia que realizaron Franck y Hertz en 1914 es uno de los experimentos claves que ayudaron a establecer la teoría atómica moderna. Nos muestra que los átomos absorben energía en pequeñas porciones o cuantos de energía, confirmando los postulados de Bohr.

La emisión de electrones por metales iluminados con luz de determinada frecuencia fue observada a finales del siglo XIX por Hertz y Hallwachs. El proceso por el cual se liberan electrones de un material por la acción de la radiación se denomina efecto fotoeléctrico o emisión fotoeléctrica. Sus características esenciales son:
  • Para cada sustancia hay una frecuencia mínima o umbral de la radiación electromagnética por debajo de la cual no se producen fotoelectrones por más intensa que sea la radiación.
  • La emisión electrónica aumenta cuando se incrementa la intensidad de la radiación que incide sobre la superficie del metal, ya que hay más energía disponible para liberar electrones.
En los metales hay electrones que se mueven más o menos libremente a través de la red cristalina, estos electrones no escapan del metal a temperaturas normales por que no tienen energía suficiente. Calentando el metal es una manera de aumentar su energía. Los electrones "evaporados" se denominan termo electrones, este es el tipo de emisión que hay en las válvulas electrónicas. También se pueden liberar electrones (fotoelectrones) mediante la absorción por el metal de la energía de radiación electromagnética.
El efecto fotoeléctrico, descubierto por Hertz en 1887, demuestra que la energía luminosa transportada por las radiaciones que inciden en el metal se transforma en energía mecánica. Parte de esa energía mecánica se emplea en arrancar los electrones de la superficie del metal y parte se transforma en energía cinética de los electrones que salen expulsados con una velocidad (v).
La teoría ondulatoria de la luz no explica suficientemente el efecto fotoeléctrico ya que según esta teoría, la energía luminosa transportada por una radiación. Sin embargo, hemos dicho antes, que el umbral fotoeléctrico de pende de la frecuencia de la radiación excitatriz, y la mayor o menor iluminación del metal influye en el número de electrones impulsados, pero no en la velocidad que adquieren.
De aquí que se buscara una explicación del fenómeno fotoeléctrico partiendo de la teoría de los quanta por el físico Alemán Marx Planck (1858 - 1947) en el año 1900. Según esta teoría la energía transportada por una radiación de frecuencia (f) es siempre un múltiplo entero del producto (h x f) donde (h) representa una constante universal que vale, en el S.I., h = 6,62 x 10 -34 Joules.s.
El, producto (h x F) constituye el cuanto de energía, es decir, la menor cantidad de energía que se puede obtener en una radiación de frecuencia (f): es como un átomo o grado de energía. Esto llevo a Einstein a replantear nuevamente la teoría corpuscular de la luz debido a Newton, diciendo que la luz consta de pequeños cuantos o gramos de energía, a los que llamó fotones.
Cada fotón de una radiación (luminosa) de frecuencia (f) transporta una energía.
E = h x f
Siendo:
E: Energía del fotón
h: Constante universal, llamada constante de Planck; su valor es 6,63x10 -34 joule.s
f: Frecuencia de la radiación.
Observamos que según ésta ecuación:
·         La energía radiante, tal como la luz, se propaga en paquetes de energía, cuyos tamaños son proporcionales a la frecuencia de la radiación.
·         La energía ha de ser absorbida o emitida por cuantos completos, no siendo admisibles fracciones del cuanto.
En definitiva la energía, igual que la materia, presenta una estructura discontinua. A partir de la teoría de Planck, todas las energías están permitidas, sino sólo aquellas que sean múltiples de (h).
La hipótesis de Planck ha sido confirmada y es una de la más fructíferas de toda la Física; la cual fue presentada en un Congreso de Berlín. Esta hipótesis, se basó en las radiaciones emitidas por cualquier fotón luminoso, indicando que no son un flujo continuo de ondas luminosas, sino una corriente de fotones individuales.
El Fotón lo podemos definir así:
Un fotón es la unidad de radiación electromagnética con una longitud de onda y una frecuencia determinada, que posee una cierta cantidad de energía llamada “cuanto de energía”.

6.1 Crisis de la física clásica y origen de la física cuántica. Radiación del cuerpo negro y la hipótesis cuántica.

CRISIS DE LA FISICA CLASICA
Finales del siglo XIX, los físicos llegaron a pensar que el edificio de las ciencias estaba prácticamente completo.
Sin embargo, en muy pocos años se realizaron varias experiencias que vinieron a demostrar lo contrario. Estos son los principales aspectos que hicieron que el edificio científico construido se derrumbara con gran estrépito:
  • Los espectros continuos de emisión
  • La teoría de la Relatividad
  • El efecto fotoeléctrico
  • El efecto Compton
  • El comportamiento dual de las ondas electromagnéticas
FISICA CUANTICA
Aunque se afirma que la física cuántica nació con el descubrimiento de Planck, en 1900, lo cierto es que su formulación se inició hasta 1925, con los trabajos de otro físico alemán, Werner Heisenberg. Es indudable que la mecánica cuántica, como casi todas las teorías científicas modernas, es una obra colectiva resultante de una gran variedad de esfuerzos personales realizados durante muchos años y en diversos lugares. Sin embargo, buscando los antecedentes determinantes de lo que ahora sabemos de ese campo, es imposible pasar por alto un artículo –fechado en 1925– en el que Heisenberg señaló la importancia de cambiar la formulación matemática de los fenómenos que ocurren en el mundo atómico.

A partir de 1926, el desarrollo de la mecánica cuántica fue espectacular. En ese año Erwin Schrödinger (físico austriaco) formuló la famosa ecuación que desde entonces lleva su nombre y con ella los físicos iniciaron la construcción del gran edificio que alberga ahora las explicaciones de los fenómenos atómicos y moleculares. Poco después se puso en limpio la estructura matemática de la teoría cuántica, especialmente por los trabajos del físico inglés Paul Adrien, Maurice Dirac y del matemático estadounidense, de origen húngaro, John von Neumman.
La física cuántica -también conocida como mecánica cuántica o mecánica ondulatoria- es la rama de la física que estudia el comportamiento de la energía y la materia cuando las dimensiones de ésta son inferiores a los 1.000 átomos.
El término ‘mecánica cuántica’ fue utilizado por primera vez por Max Born en 1924, aunque la primera formulación cuántica de un fenómeno se había dado a conocer anteriormente, el 14 de diciembre de 1900 en una sesión de la Sociedad Física de la Academia de Ciencias de Berlín. Su autor, Max Planck es considerado el padre de los fundamentos de la física cuántica.
En cualquier caso, la mecánica cuántica es la última y más moderna de las ramas de la física, ya que sus bases se concretaron a lo largo de la primera mitad del siglo XX, en respuesta a los problemas que no podían ser resueltos por medio de la física clásica.
En el desarrollo formal de la teoría tuvieron mucho que ver también otros físicos y matemáticos, entre quienes destacaron Einstein, Heisenberg, Schrödinger, Dirac y Von Neumann. Algunos de los aspectos fundamentales de la teoría de la física mecánica están siendo aún estudiados activamente.

RADIACION DEL CUERPO NEGRO
Todos los objetos emiten ondas electromagnéticas. Para entender por qué emiten radiación los objetos ponga mucha atención a las siguientes consideraciones: 
  
  • Los objetos están hechos de átomos. 
     
     
  • Un átomo puede emitir radiación (como la luz) cuando uno de sus electrones pierde energía y así pasa a un orbital de menor energía. 
     
     
  • Un átomo puede absorber radiación cuando uno de sus electrones gana energía y así pasa a un orbital de mayor energía. 
     
     
  • El movimiento de los átomos en un objeto produce choques o vibraciones que estimulan la emisión y absorción de radiación. 
     
     
  • Un aumento en la temperatura de un objeto representa un aumento de la energía cinética de movimiento de sus átomos. 
     
     
  • En la naturaleza ningún objeto puede tener temperatura absoluta igual a cero. 
     
     

  
El físico alemán Max Plank, descubrió la ley que gobierna la radiación de los cuerpos en equilibrio termodinámico. Según Plank, la intensidad de radiación para cada longitud de onda depende únicamente de la temperatura del cuerpo en cuestión. 
 
 
El espectro de radiación (o intensidad para cada longitud de onda) al que llegó Plank tiene una forma característica así: 
 
 

Los físicos designan este espectro con el nombre de Radiación de Cuerpo Negro. Plank llegó a este resultado introduciendo el concepto de quantum de energía (es decir que la energía en la naturaleza sólo se puede intercambiar en paquetes con cantidades discretas). Este es el principio de la mecánica cuántica. 
 
 

HIPOTESIS CUANTICA
La física de la época de Max Planck no permitía explicar los detalles de la radiación térmica (también llamada radiación de cuerpo negro). Planck tuvo que inventar una física nueva. Supuso que la radiación se emitía y absorbía en “paquetes”. Cada paquete contiene una cantidad fija de energía y no se puede subdividir. Planck llamó a los paquetes quantum (que quiere decir “qué tanto” en latín). Con la hipótesis de que la radiación venía en cuantos, Planck logró explicar la radiación térmica.

La hipótesis cuántica de Planck iba en contra de lo que se sabía acerca de la energía. Los físicos pensaban que ésta podía ir y venir entre los objetos como un flujo continuo (digamos, como un chorro de agua, que llena una cubeta continuamente). Planck cambió este flujo continuo por una ráfaga de paquetes discontinuos (como si la cubeta se llenara de piedras, o cubos de hielo). Al principio este razonamiento no le gustó ni a Planck. Pero la hipótesis cuántica ganó adeptos conforme fue explicando otros fenómenos que no se entendían con la física clásica.