jueves, 20 de enero de 2011


4.7 Ondas y partículas.
?
Equipo
¿Cuál es la diferencia entre las ondas y las partículas?
6
Las ondas tienen bastantes propiedades específicas que, según el punto de vista de la física clásica, no pueden tener las partículas, y estas propiedades deberían servir para diferenciar los dos procesos Así, por ejemplo, al atravesar una rendija:
Si lo hace un chorro de partículas no se producirá difracción. Casi todas seguirán en línea recta después de pasar por la rendija y al incidir en una pantalla deben producir un máximo de intensidad enfrente de la abertura y disminuir bruscamente dicha intensidad al alejarnos de esa zona.
En cambio, si lo hace una onda y el tamaño de la rendija es del orden de magnitud de la longitud de onda, se producirá difracción y la intensidad recibida en una pantalla se debe distribuir por ella de una forma más homogénea.


ACTIVIDAD 3
4.8 síntesis del tema

Hacer el mapa conceptual integrando las observaciones de cada equipo
:
.8 síntesis del tema:
Equipo1
Slide 1
Un tipo particular de movimiento: El movimiento ondulatorio
Slide 2
Activación de conocimientos previos ¿Qué observas?
Slide 3
Los Tsunamis Los Tsunamis son una serie de ondas marinas de gran tamaño generadas por una perturbación en el océano, al ocurrir principalmente un movimiento sísmico superficial (< 60 Km de profundidad) bajo el fondo marino.

Equipo 2

Slide 4
Características de los Tsunamis En mar abierto lejos de la costa, es un tren de olas de pequeña altura (del orden de centímetros a metros), que viajan a gran velocidad (casi a 1,000 kilómetros por hora) sin embargo, al llegar a costa y al haber menor profundidad, éstas disminuyen su velocidad pero aumentan en altura pudiendo causar gran destrucción y numerosas víctimas. Por tratarse de trenes de ondas marinas, se pueden caracterizar por su período, altura de onda, longitud de onda y velocidad de propagación, que son atributos comunes a ellas.
Slide 5
Objetivos Definir lo que son las ondas Diferenciar entre ondas transversales y longitudinales Identificar los elementos que constituyen una onda Conocer las características de las ondas y su ecuación Efectuar cálculos Reconocer los fenómenos relacionados con las ondas
Slide 6
TEMA A DESARROLLAR Un tipo particular de movimiento : El movimiento ondulatorio Ondas Transversales y Ondas Longitudinales


Equipo 3
Slide 7
Estrategia de Enseñanza: Ondas transversales y longitudinales Si arrojamos una piedra a un estanque o a un recipiente grande con agua, podemos observar que en el lugar donde cayó la piedra se produce una serie de ONDAS en forma de anillos concéntricos, que se mueven como si se alejaran del sitio de origen.
Slide 8
Ondas transversales Los cuerpos que flotan en el agua suben y bajan cuando pasa la onda, pero no viajan con ella. Cuando las partículas del medio en el cual se propaga la onda vibran en forma perpendicular a la dirección de propagación se dice que se efectúa un movimiento ondulatorio transversal.
Slide 9
Ondas Longitudinales Si las partículas del medio vibran en forma paralela a la dirección de propagación de la onda, se dice que se efectúa un movimiento ondulatorio longitudinal

Equipo 4

Slide 10
Elementos de una onda Cresta Amplitud Valle Nodo Elongación
Slide 11
Características de las ondas y ecuaciones que las relacionan Longitud de onda.- Distancia entre dos crestas o dos valles. Se mide en m, cm, Km. Etc. Período (T).- Tiempo en que tarda un punto de la onda en efectuar una oscilación completa. Frecuencia (f).- Número de oscilaciones en una unidad de tiempo Se mide en Hertz (Hz= 1/s) La fórmula que las relaciona es: T= 1/f Esta fórmula implica que cuanto mayor sea la frecuencia, menor es el período de oscilación.
Slide 12
Velocidad de propagación Para calcular la velocidad de propagación de una onda se utiliza la siguiente ecuación:
           
Equipo 5

Slide 13
El Sonido y sus propiedades Propagación de energía en un medio material a través de ondas longitudinales, que tarda en ser percibido por nuestro oído.
Slide 14
Propiedades del Sonido Intensidad.- Nos permite percibir un sonido como fuerte o débil
Slide 15
Propiedades del sonido Tono.- Propiedad que nos permite distinguir los sonidos graves de los sonidos agudos, y se debe a la frecuencia de vibración. A mayor frecuencia, más agudo es el sonido

Equipo 6

Slide 16
Propiedades del sonido Timbre.- Está relacionada con la forma de la onda y permite distinguir los sonidos emitidos por diferentes instrumentos
Slide 17
Estrategia de Aprendizaje y conclusiones del tema Realiza en tu cuaderno un Mapa conceptual del tema visto en clase Contestar las páginas 32, Desafío página 35, página 37 a 39. Práctica de Ondas: Hacer Burbujas y máquina de ondas Traer información (copy paste) de contaminación por ruido para elaborar un cuadro sinóptico de contaminación por ruido en equipos en el salón. ELABORACIÓN DE CONCLUSIONES DEL TEMA
Slide 18
Actividades de la práctica de onda

el sonido


Equipo
4.5 El sonido como ejemplo.’ que es el sonido?
4.6 Algunas aplicaciones tecnológicas y en la salud
6
Cuando se produce una perturbación periódica en el aire, se originan ondas sonoras longitudinales. Por ejemplo, si se golpea un diapasón
con un martillo, las ramas vibratoria emiten ondas longitudinales. El oído, que actúa como receptor de estas ondas periódicas, las interpreta como sonido.
El término sonido se usa de dos formas distintas. Los fisiólogos definen el sonido en término de las sensaciones auditivas producidas por perturbaciones longitudinales en el aire. Para ellos, el sonido no existe en un planeta distante. En física, por otra parte, nos referimos a las perturbaciones por sí mismas y no a las sensaciones que producen.
El uso más habitual de las ondas de radio con efecto terapéutico se lleva a cabo mediante el uso de corrientes alternas de frecuencia superior a los 100 KHz.
A diferencia de las corrientes alternas de frecuencia menor, las ondas de radio no tienen un efecto excito motor (estimulante del sistema neuromuscular), sino que producen en el organismo un efecto térmico. Gracias a las ondas de radio se dispone de un mecanismo para realizar una termoterapia en el interior del organismo de manera homogénea.
Microondas:
Las ondas microondas tienen muchas aplicaciones. Una de ellas es la de los hornos. Su funcionamiento se basa en el hecho de que la radiación electromagnética de muy alta frecuencia tiene mucha energía, por lo que hay una transferencia de calor muy grande a los alimentos en poco tiempo.
Las comunicaciones y el radar son otras dos aplicaciones de las microondas.
Infrarrojos:
Los rayos infrarrojos se utilizan comúnmente en nuestra vida cotidiana: cuando encendemos el televisor y cambiamos de canal con nuestro mando a distancia; en el supermercado, nuestros productos se identifican con la lectura de los códigos de barras; vemos y escuchamos los discos compactos... todo, gracias a los infrarrojos. Estas son sólo algunas de las aplicaciones más simples, ya que se utilizan también en sistemas de seguridad, estudios oceánicos, medicina, etc.
Los rayos X:
Los rayos X se emplean sobre todo en los campos de la investigación científica, la industria y la medicina.
El estudio de los rayos X ha desempeñado un papel primordial en la física teórica, sobre todo en el desarrollo de la mecánica cuántica. Como herramienta de investigación, los rayos X han permitido confirmar experimentalmente las teorías cristalográficas. Utilizando métodos de difracción de rayos X es posible identificar las sustancias cristalinas y determinar su estructura. . Los métodos de difracción de rayos X también pueden aplicarse a sustancias pulverizadas que, sin ser cristalinas, presentan alguna regularidad en su estructura molecular. Mediante estos métodos es posible identificar sustancias químicas y determinar el tamaño de partículas ultramicroscópicas. Los elementos químicos y sus isótopos pueden identificarse mediante espectroscopia de rayos X, que determina las longitudes de onda de sus espectros de líneas característicos. Varios elementos fueron descubiertos mediante el análisis de espectros de rayos X.
Muchos productos industriales se inspeccionan de forma rutinaria mediante rayos X, para que las unidades defectuosas puedan eliminarse en el lugar de producción. Existen además otras aplicaciones de los rayos X, entre las que figuran la identificación de gemas falsas o la detección de mercancías de contrabando en las aduanas; también se utilizan en los aeropuertos para detectar objetos peligrosos en los equipajes. Los rayos X ultra blandos se emplean para determinar la autenticidad de obras de arte y para restaurar cuadros.
Las fotografías de rayos X o radiografías y el fluoroscopio se emplean mucho en medicina como herramientas de diagnóstico. En la radioterapia se emplean rayos X para tratar determinadas enfermedades, en particular el cáncer, exponiendo los tumores a la radiación.
Rayos gamma:
Los rayos gamma provenientes del cobalto 60 se utilizan para esterilizar instrumentos que no pueden ser esterilizados por otros métodos, y con riesgos considerablemente menores para la salud.
Los rayos gamma también son utilizados en la radioterapia.


EL SONIDO

MATERIAL: LIGAS, HILO, VASOS  DE PLASTICO, AGUJA, BOTELLAS DE VIDRIO VACIAS, BATUTA DE PLASTICO Y METALICA.
PROCEDIMIENTO:
1.- GENERACION DE SONIDOS
- ENGARZAR LAS LIGAS PARA FORMAR UNA CADENA, FIJAR LA CADENA POR LOS EXTREMOS A LOS BARROTES DE CONTATOS, EN LA PARTE CENTRAL  AMARRAR EL HILO Y FIJAR EL OTRO EXTREMO EN EL TUBO DE LA PARED DEL FONDO DEL LABORQATORIO.
HACER VIBRAR MEDIANTE PULSOS LA LIGA,  EN FORMA   HORIZONTAL Y VERTICAL. ANOTAR LOS CAMBIOS PRODUCIDOS.

2.- TRANSMISION DEL SONIDO.
- EN EL FONDO DEL VASO DE PLASTICO AMARAR EL HILO PERFORANDO EL VASO CON LA  AGUJA, MEDIR LA DISTANCIA DE  LA MESA DE UN EQUIPO AL OTRO EXTREMO DEL EQUIPO Y UNIR EL OTRO VASO DE LA MISMA FORMA. HABLA A TRAVES DE CADA ASO DE EQUIPO A EQUIPO.

3.- FONOBOTELLA.
COLOCAR EN FILA LAS SIETE BOTELLAS, Y LLENARLAS CON AGUA MIDIENDO CON QUINCE ML DE AGUA LA PRIMERA, 30 ML LA SEGUNDA ETC.
GENERAR LOS DIFERENTES SONIDOS CON LAS VARILLAS DE PLASTICO Y VIDRIO.ANOTAR LOS CAMBISO  OBSERVADOS.
4.6 Algunas aplicaciones tecnológicas y en la salud
Algunas de las aplicaciones del sonido las encontramos en los instrumentos musicales y en la música. Los especialistas en sonido (ingeniero de sonido) aplican sus conocimientos en ésta rama de la física para fabricar habitaciones o salones de música donde no se produce el fenómeno de la reverberación. Dichos especialistas utilizan fibras de vidrios con el que obtienen mejor sonido.

En el campo de la medicina, los nefrólogos, especialista de las vías urinarias, utiliza el ecógrafo. Este aparato emite ultrasonido y con ello hacen exploraciones en el interior del cuerpo humano, esto se debe al fenómeno de la reflexión, lo que permite obtener gráficas de la situación del o los órganos explorados.
Otro aparato que utilizan tanto los nefrólogos, urólogos y gastroenterólogos es el fonógrafo que al igual que el ecógrafo utiliza los ultrasonidos para hacer exploraciones internas, pero a través de este aparato en lugar de obtener gráficas se obtienen imágenes del o de los órganos explorados.
Tanto el ecógrafo como el fonógrafo son muy usados en estos tiempos y han ido sustituyendo en gran medida a los Rayos X, ya que las radiaciones pueden producir daños en los tejidoscelulares del cuerpo y en el fetode las mujeres embarazadas. http://www.youtube.com/watch?v=C-_B5dFvDn8&feature=related

Otro aparato utilizado por los médicos para eliminar piedras de los riñones, (cálculo renal), es el nefroscopio, que también emite ultrasonidos, haciendo posible la visualización de los riñones en una pantalla cuando se hacen coincidir las ondas ultrasónicas sobre la piedra en el riñón. Estas piedras son desintegradas y más tarde son expulsadas a través de la orina del paciente.

Recapitulación 1


Equipo
Resumen martes y jueves
1
El martes el profesor nos mostro el programa de física II, realizamos un esquema de este. El jueves realizamos experimentos para comprender los fenómenos ondulatorios, es decir como dejar caer una gota de agua en un recipiente lleno de agua y así medir el número de ondas  y otros experimentos.
2
El día martes realizamos un mapa conceptual acerca de las 8 primeras semanas de trabajo, y nos dio la bienvenida. El jueves realizamos una práctica acerca de las ondas, para medir el movimiento ondulatorio del agua, sonido y en las cuerdas.
3
Martes: El profesor nos dio la bienvenida a todo el grupo 409 A, realizamos un mapa conceptual de los temas  que estudiaremos durante este curso, y el Jueves realizamos una práctica muy interesante acerca de la onda, empleamos diferentes materiales como una cuerda, un cable y alambre a los cuales dimos un impulso para observar la longitud de onda. También observamos ondas mediante el agua y vimos el fenómeno de refracción.
4
Martes: dio la bienvenida el profesor, realizamos un mapa conceptual sobre los temas que trabajaremos en este semestre. Jueves : realizamos diversas pruebas sobre el movimiento ondulatorio  y sonidos que se producían escribimos diversos conceptos de los temas que tocaban en esta semana. :D
5
Martes: el profesor nos enseño la forma de trabajo, contestamos un examen diagnostico e hicimos un mapa conceptual (tipo reloj) con las semanas  y los temas a tratar en el semestre. Jueves realizamos diversos experimentos tratando el tema de las ondas, energías y fuerzas, etc . 
6
Martes: el profe nos dio la bienvenida, realizamos un pequeño examen diagnostico, un mapa conceptual de los temas a ver en el semestre y nos entrego el programa. Jueves: en la segunda sesión realizamos una práctica sobre fenómenos ondulatorios  que consistía en observar una gota de agua, un cable y oír el sonido de un reloj a través  de dos tubos de papel.

martes, 18 de enero de 2011

ondas y particulas

Las ondas tienen bastantes propiedades específicas (por ejemplo, difracción, interferencias, efecto Doppler,..) que, según el punto de vista de la física clásica, no pueden tener las partículas, y estas propiedades deberían servir para diferenciar los dos procesos. Así, por ejemplo, al atravesar una rendija:
Si lo hace un chorro de partículas (dibujos de arriba) no se producirá difracción. Casi todas seguirán en línea recta después de pasar por la rendija y al incidir en una pantalla deben producir un máximo de intensidad enfrente de la abertura y disminuir bruscamente dicha intensidad al alejarnos de esa zona.
En cambio, si lo hace una onda y el tamaño de la rendija es del orden de magnitud de la longitud de onda (dibujos de abajo), se producirá difracción y la intensidad recibida en una pantalla se debe distribuir por ella de una forma más homogénea.
 
En algunos casos es sencillo verificar que se cumplen éstas y otras predicciones experimentales que deberían permitir diferenciar las ondas de un chorro de partículas viajeras. Por ejemplo, no existe duda de que por la superficie del agua se transmiten ondas mecánicas transversales, de que el sonido se transmite por el aire y por otros medios materiales mediante ondas longitudinales o de que una escopeta de repetición puede actuar como foco de un chorro de perdigones.
 
Las cosas se complican cuando se somete a este tipo de pruebas a la luz y también a radiaciones formadas por partículas atómicas y/o subatómicas. En estos casos se observan comportamientos, que la física clásica no puede explicar.
La luz se comporta como una onda (no mecánica) que se refracta, se difracta, produce interferencias al atravesar una rendija doble o múltiple, etc. Pero, la propia luz también actúa como un chorro de corpúsculos en bastantes procesos en los que sus cuantos de energía (fotones) interaccionan con partículas subatómicas.

Algunas aplicaciones tecnologicas y en la salud de las ondas

El uso más habitual de las ondas de radio con efecto terapéutico se lleva a cabo mediante el uso de corrientes alternas de frecuencia superior a los 100 KHz.
A diferencia de las corrientes alternas de frecuencia menor, las ondas de radio no tienen un efecto excito motor (estimulante del sistema neuromuscular), sino que producen en el organismo un efecto térmico. Gracias a las ondas de radio se dispone de un mecanismo para realizar una termoterapia en el interior del organismo de manera homogénea.
Microondas:
Las ondas microondas tienen muchas aplicaciones. Una de ellas es la de los hornos. Su funcionamiento se basa en el hecho de que la radiación electromagnética de muy alta frecuencia tiene mucha energía, por lo que hay una transferencia de calor muy grande a los alimentos en poco tiempo.
Las comunicaciones y el radar son otras dos aplicaciones de las microondas.
Infrarrojos:
Los rayos infrarrojos se utilizan comúnmente en nuestra vida cotidiana: cuando encendemos el televisor y cambiamos de canal con nuestro mando a distancia; en el supermercado, nuestros productos se identifican con la lectura de los códigos de barras; vemos y escuchamos los discos compactos... todo, gracias a los infrarrojos. Estas son sólo algunas de las aplicaciones más simples, ya que se utilizan también en sistemas de seguridad, estudios oceánicos, medicina, etc.
Los rayos X:
Los rayos X se emplean sobre todo en los campos de la investigación científica, la industria y la medicina.
El estudio de los rayos X ha desempeñado un papel primordial en la física teórica, sobre todo en el desarrollo de la mecánica cuántica. Como herramienta de investigación, los rayos X han permitido confirmar experimentalmente las teorías cristalográficas. Utilizando métodos de difracción de rayos X es posible identificar las sustancias cristalinas y determinar su estructura. . Los métodos de difracción de rayos X también pueden aplicarse a sustancias pulverizadas que, sin ser cristalinas, presentan alguna regularidad en su estructura molecular. Mediante estos métodos es posible identificar sustancias químicas y determinar el tamaño de partículas ultramicroscópicas. Los elementos químicos y sus isótopos pueden identificarse mediante espectroscopia de rayos X, que determina las longitudes de onda de sus espectros de líneas característicos. Varios elementos fueron descubiertos mediante el análisis de espectros de rayos X.
Muchos productos industriales se inspeccionan de forma rutinaria mediante rayos X, para que las unidades defectuosas puedan eliminarse en el lugar de producción. Existen además otras aplicaciones de los rayos X, entre las que figuran la identificación de gemas falsas o la detección de mercancías de contrabando en las aduanas; también se utilizan en los aeropuertos para detectar objetos peligrosos en los equipajes. Los rayos X ultra blandos se emplean para determinar la autenticidad de obras de arte y para restaurar cuadros.
Las fotografías de rayos X o radiografías y el fluoroscopio se emplean mucho en medicina como herramientas de diagnóstico. En la radioterapia se emplean rayos X para tratar determinadas enfermedades, en particular el cáncer, exponiendo los tumores a la radiación.
Rayos gamma:
Los rayos gamma provenientes del cobalto 60 se utilizan para esterilizar instrumentos que no pueden ser esterilizados por otros métodos, y con riesgos considerablemente menores para la salud.
Los rayos gamma también son utilizados en la radioterapia.

El sonido como ejemplo

Cuando se produce una perturbación periódica en el aire, se originan ondas sonoras longitudinales. Por ejemplo, si se golpea un diapasón
con un martillo, las ramas vibratoria emiten ondas longitudinales. El oído, que actúa como receptor de estas ondas periódicas, las interpreta como sonido.
El término sonido se usa de dos formas distintas. Los fisiólogos definen el sonido en término de las sensaciones auditivas producidas por perturbaciones longitudinales en el aire. Para ellos, el sonido no existe en un planeta distante. En física, por otra parte, nos referimos a las perturbaciones por sí mismas y no a las sensaciones que producen.

jueves, 13 de enero de 2011

Semana 10 - 14 (clase)

Equipo              Generalidades.

6                                  En una onda podemos observar; la amplitud, longitud de onda, período, frecuencia, velocidad de la onda, y la ecuación de onda.
La amplitud, se lo denomina a la altura máxima que alcanza cada punto del medio al ser perturbado, es decir, la altura máxima de la perturbación.
La longitud de onda, es la distancia que se recorre por la perturbación al realizar una onda completa

Magnitudes relativas a fenómenos ondulatorios

· Amplitud (A): Es la distancia máxima que puede separarse de su posición de equilibrio un punto que está realizando un movimiento vibratorio. Se mide en metros.
· Elongación (x): Es la distancia que separa a un punto que está vibrando de su posición de equilibrio. Se mide en metros.
· Fase: Se dice que dos partículas están en fase cuando se encuentran en el mismo estado de vibración.
· Período (T): Es el tiempo que emplea en una oscilación o vibración completa. También se define como el tiempo que transcurre hasta que una partícula vuelve a estar en el mismo estado de vibración. Se mide en segundos.
· Frecuencia (f): Es el número de oscilaciones completas que una partícula da en un segundo. Su unidad es el hertz o hertzio (Hz) que corresponde a una vibración cada segundo: 1Hz = 1
El período y la frecuencia son inversamente proporcionales: T = 1/f
· Velocidad del movimiento ondulatorio (v): Es la velocidad con la que se propaga la onda. Se expresa como el cociente entre la longitud de onda y el período

Magnitudes relativas a fenómenos ondulatorios

Amplitud (A): Es la distancia máxima que puede separarse de su posición de equilibrio un punto que está realizando un movimiento vibratorio. Se mide en metros.
· Elongación (x): Es la distancia que separa a un punto que está vibrando de su posición de equilibrio. Se mide en metros.
· Fase: Se dice que dos partículas están en fase cuando se encuentran en el mismo estado de vibración.
· Período (T): Es el tiempo que emplea en una oscilación o vibración completa. También se define como el tiempo que transcurre hasta que una partícula vuelve a estar en el mismo estado de vibración. Se mide en segundos.
· Frecuencia (f): Es el número de oscilaciones completas que una partícula da en un segundo. Su unidad es el hertz o hertzio (Hz) que corresponde a una vibración cada segundo: 1Hz = 1
El período y la frecuencia son inversamente proporcionales: T = 1/f
· Velocidad del movimiento ondulatorio (v): Es la velocidad con la que se propaga la onda. Se expresa como el cociente entre la longitud de onda y el período

Fenómenos ondulatorios: reflexión, refracción, difracción, interferencia y resonancia de  ondas

Reflexión:
Cuando un rayo de luz, o bien la dirección de propagación de un frente de ondas, se encuentra con una superficie, la onda reflejada lo hará con un ángulo igual que el de la onda incidente, medido desde la perpendicular a la superficie donde se refleja la onda.
REFRACCIÓN: La ley de refracción nos ofrece el ángulo que adopta la propagación de la onda en el segundo medio, medido también respecto a la vertical a la superficie, como se indica en la figura. Además los rayos de incidencia, reflexión y refracción se encuentran siempre en el mismo plano
DIFRACCIÓN: Ocurre cuando una onda al topar con el borde de un obstáculo deja de ir en línea recta para rodearlo.
INTERFERENCIA: Ocurre cuando dos ondas se combinan al encontrarse en el mismo punto del espacio.
RESONANCIA DE ONDAS: Es la situación en la que un sistema mecánico, estructural o acústico vibra en respuesta a una fuerza aplicada con la frecuencia natural del sistema o con una frecuencia próxima.

Fenómenos ondulatorios
Material: Agua, cuerdas.
Generación de las ondas: colocar la cuera fija en un punto y proporcionarle un pulso, enseguida dos pulsos y posterormente tres pulsos.
Determinar las
Equipo
Ondas en la cuerda
Ondas en el cable
Ondas en el alambre
1
2
3

4
2
2
3
4
3
2
3

5
4
3
3
4
5
2
3
3
6
2
3
3


Observar las ondas que se generan sobre la superficie de agua:
Una gota, dos gotas tres gotas de agua sobre la superifice:
Reflexion de las ondas:
Equipo
Una gota
Dos gotas
Tres gotas
1



2



3



4
4
5
7
5



6
2
4
8

Fenómenos ondulatorios: reflexión, refracción, difracción, interferencia y resonancia de ondas


Las ondas periódicas están caracterizadas por crestas/montes y valles, y usualmente es categorizada como longitudinal o transversal. Las ondas transversales son aquellas con las vibraciones perpendiculares a la dirección de propagación de la onda; ejemplos incluyen ondas en una cuerda y ondas electromagnéticas. Ondas longitudinales son aquellas con vibraciones paralelas en la dirección de la propagación de las ondas; ejemplos incluyen ondas sonoras.




Cuando un objeto corte hacia arriba y abajo en una onda en un estanque, experimenta una trayectoria orbital porque las ondas no son simples ondas transversales sinusoidales.

Ondas en la superficie de una cuba son realmente una combinación de ondas transversales y longitudinales; por lo tanto, los puntos en la superficie siguen caminos orbitales.

Todas las ondas tienen un comportamiento común bajo un número de situaciones estándar. Todas las ondas pueden experimentar las siguientes:

Difracción - Ocurre cuando una onda al topar con el borde de un obstáculo deja de ir en línea recta para rodearlo.

Efecto Doppler - Efecto debido al movimiento relativo entre la fuente emisora de las ondas y el receptor de las mismas.

Interferencia - Ocurre cuando dos ondas se combinan al encontrarse en el mismo punto del espacio.

Reflexión - Ocurre cuando una onda, al encontrarse con un nuevo medio que no puede atravesar, cambia de dirección.

Refracción - Ocurre cuando una onda cambia de dirección al entrar en un nuevo medio en el que viaja a distinta velocidad.

Onda de choque - Ocurre cuando varias ondas que viajan en un medio se superponen formando un cono.


Magnitudes relativas a fenomenos ondulatorios

El movimiento de vibración más sencillo posible es el movimiento armónico simple. Si generamos este tipo de movimiento en un punto de un medio elástico (por ejemplo un resorte), ese punto actúa como foco de una onda armónica.

En la figura se representa una onda armónica transversal producida en un muelle. Es como si se hubiera hecho una fotografía en un cierto instante, mientras todos los puntos del muelle están realizando un movimiento armónico simple perpendicular a la dirección de propagación. Se producen alternativamente una serie de "crestas" y de "valles".
Para describir a la onda armónica, se definen las siguientes magnitudes:

La longitud de onda, l, igual a la distancia entre los centros de dos crestas o dos valles consecutivos.

El periodo, T que es el tiempo que tarda la perturbación en avanzar una longitud de onda.

La velocidad de propagación de la onda, c, que es la rapidez con la que avanza la perturbación.

Estas tres magnitudes cumplen la siguiente relación c = l/T

Generalidades SEMANA ENERO 10-14

Se define como modelo de un sistema a la estructura cuyo comportamiento es conocido o se puede deducir a partir de bases teóricas, y que se asemeja bastante al sistema real en estudio.
Ahora bién, la selección del modelo más adecuado juega un papel importante, ya que debe ser en función de los objetivos y precisión que se requiera, para que así los resultados obtenidos sean lo más afines a nuestros intereses.
El modelo que nosotros adoptaremos para representar a una cadena diatómica unidimensional estará formado por dos clases de partículas (átomos), con masas distintas y unidas por medio de resortes, estos de masa despreciable, con constantes elásticas , esquemáticamente tenemos.

miércoles, 12 de enero de 2011

Parámetros que caracterizan el movimiento ondulatorio Sesión 2

En una onda podemos observar; la amplitud, longitud de onda, período, frecuencia, velocidad de la onda, y la ecuación de onda. 
La amplitud, se lo denomina a la altura máxima que alcanza cada punto del medio al ser perturbado, es decir, la altura máxima de la perturbación.
La longitud de onda, es la distancia que se recorre por la perturbación al realizar una onda completa.
El período es el tiempo asociado a la longitud de onda que tarda para realizarse una onda toda completa.
La frecuencia es la cantidad de oscilaciones completas que se realizan en la unidad del tiempo, existe entre la frecuencia y el período una relación matemática , una es la inversa del otro.
La velocidad de onda, depende del tipo de la onda y del medio en el que se propaga; como la velocidad es la distancia recorrida dividiendo el tiempo que tarda en recorrer dicha distancia si en lugar de tener una distancia cualquiera tenemos una longitud de onda el tiempo empleado será el período (T) por lo tanto la velocidad de propagación de la onda se podrá calcular. V=
La ecuación de la onda, es una onda que se propaga a partir del sistema que emite y a medida que se analiza, provoca oscilaciones de algún tipo en los puntos del espacio de alcance. Es posible descubrir este proceso con una canción que permita predecir el estado de cualquier punto alcanzado por la onda en cualquier instante del tiempo
En toda onda se definen los parámetros:     y   perturbación que experimenta un punto x en el instante t
    A  valor máximo de la perturbación
    l   longitud de onda es el espacio que avanza la onda en un período T
    k   número de onda    k = 2 · p /  l
    w  pulsación    w =  2 · p / T
    F  frecuencia, número de oscilaciones en un segundo  F = 1 / T
    v  velocidad de propagación de la onda   v =  l / T =  v =  l . F = w / k